Stability and Uniform Approximation of Nonlinear Filters using the Hilbert Metric, and Application to Particle Filters

نویسندگان

  • François Le Gland
  • Nadia Oudjane
  • François Le
چکیده

We study the stability of the optimal lter w.r.t. its initial condition and w.r.t. the model for the hidden state and the observations in a general hidden Markov model, using the Hilbert projective metric. These stability results are then used to prove, under some mixing assumption, the uniform convergence to the optimal lter of several particle lters, such as the interacting particle lter and other original particle lters. Stabilitt et approximation uniforme des ltres nonnlinnaires avec la mmtrique de Hilbert, et application aux ltres particulaires RRsumm : Nous tudions la stabilitt du ltre optimal par rapport sa condition initiale et par rapport au moddle ddcrivant l''tat cachh et les observations dans un moddle de Markov cachh ggnnral, en utilisant la mmtrique de Hilbert. Ces rrsultats de stabilitt sont ensuite utilisss pour ddmontrer, sous une hypothhse de mmlange, la convergence uniforme vers le ltre optimal de plusieurs ltres particulaires, tels que le ltre particulaire avec interaction et d'autres ltres particulaires originaux.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability and Uniform Approximation of Nonlinear Filters Using the Hilbert Metric and Application to Particle Filters1 by François Le Gland

We study the stability of the optimal filter w.r.t. its initial condition and w.r.t. the model for the hidden state and the observations in a general hidden Markov model, using the Hilbert projective metric. These stability results are then used to prove, under some mixing assumption, the uniform convergence to the optimal filter of several particle filters, such as the interacting particle fil...

متن کامل

Utilizing Kernel Adaptive Filters for Speech Enhancement within the ALE Framework

Performance of the linear models, widely used within the framework of adaptive line enhancement (ALE), deteriorates dramatically in the presence of non-Gaussian noises. On the other hand, adaptive implementation of nonlinear models, e.g. the Volterra filters, suffers from the severe problems of large number of parameters and slow convergence. Nonetheless, kernel methods are emerging solutions t...

متن کامل

Low latency IIR digital filter design by using metaheuristic optimization algorithms

Filters are particularly important class of LTI systems. Digital filters have great impact on modern signal processing due to their programmability, reusability, and capacity to reduce noise to a satisfactory level. From the past few decades, IIR digital filter design is an important research field. Design of an IIR digital filter with desired specifications leads to a no convex optimization pr...

متن کامل

Can Local Particle Filters Beat the Curse of Dimensionality?∗ by Patrick Rebeschini

The discovery of particle filtering methods has enabled the use of nonlinear filtering in a wide array of applications. Unfortunately, the approximation error of particle filters typically grows exponentially in the dimension of the underlying model. This phenomenon has rendered particle filters of limited use in complex data assimilation problems. In this paper, we argue that it is often possi...

متن کامل

Can Local Particle Filters Beat the Curse of Dimensionality ?

The discovery of particle filtering methods has enabled the use of nonlinear filtering in a wide array of applications. Unfortunately, the approximation error of particle filters typically grows exponentially in the dimension of the underlying model. This phenomenon has rendered particle filters of limited use in complex data assimilation problems. In this paper, we argue that it is often possi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001